
CYCLOADDITIONS TO KETENE-S,N-ACETALS.

NEW SYNTHESSES OF BENZO[b]- AND NAPHTHO[1,2-b]FURANS, 1-BENZ- AND NAPHTH[1,2-b]OXEPIINS, AND BENZ[b]FURAN-2-ONES

Hiroki TAKAHATA, Akira ANAZAWA, Keiko MORIYAMA, and Takao YAMAZAKI*
 Faculty of Pharmaceutical Sciences, Toyama Medical & Pharmaceutical University, Sugitani 2630, Toyama 930-01

Annulation of ketene-S,N-acetal with 1,4-quinones gave benzo[b]- and naphtho[1,2-b]furans which were converted to 1-benz- and naphth[1,2-b]oxepins and benzo[b]furan-2-ones.

We have exploited new and interesting syntheses of heterocycles using ketene-S,N-acetals as attractive enamines.¹⁻³⁾ They react with a variety of electrophiles to form carbon-carbon bond at β position and are then attacked by nucleophiles at α position followed by selective elimination of alkyl mercaptan to give enamine moiety again as shown below.

In our continuing studies on the synthetic application of ketene-S,N-acetals as a C_2 building block, we describe a new synthesis of benzo[b]- and naphtho[1,2-b]furans by the first enamine reaction of a new ketene-S,N-acetal (1)⁴⁾ with 1,4-quinones and their transformation using the second enamine reaction to oxepin and 3-substituted benzo[b]furan-2-one derivatives.

Annulation of 1 with 1,4-benzoquinones (2a-c) and 1,4-naphthoquinones (3a,b) in boiling toluene or tetrahydrofuran (THF) gave benzo[b]furans (4a-c) and naphtho[1,2-b]furans (5a,b),⁵⁾ respectively, in moderate yields (Table 1). The use of other solvents (benzene, acetonitrile, and 1,2-dimethoxyethane) resulted in poor yields. In order to demonstrate the character of the furans (4 and 5), we carried out the following reactions. At first, the ring-expansion⁶⁾ of 4a,b and 5a with dimethyl acetylenedicarboxylate (DMAD) in refluxing dioxane afforded 1-benz- and naphth[1,2-b]oxepins (6a,b, and 7a),⁵⁾ respectively (Table 2).

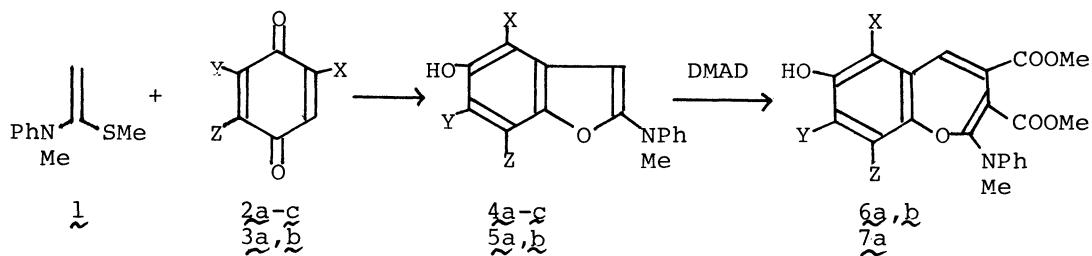


Table 1. Synthesis of 4 and 5

Entry	1,4-Quinone	Product ^{a)}	Yield/%	Solvent
1	$\tilde{2a}$ X=Y=Z=H	$\tilde{4a}$	45	THF
2	$\tilde{2b}$ X=Y=Cl, Z=H	$\tilde{4b}$	51	Toluene
3	$\tilde{2c}$ X=H, Y=Z=CN	$\tilde{4c}$ ^{b)}	10	THF
4	$\tilde{3a}$ X=H, Y,Z=	$\tilde{5a}$	35	Toluene
5	$\tilde{3b}$ X=Cl, Y,Z=	$\tilde{5b}$	48	THF

a) The reaction was carried out using each 1 mmol of 1 and 2 or 3. All reaction times were 15 h.

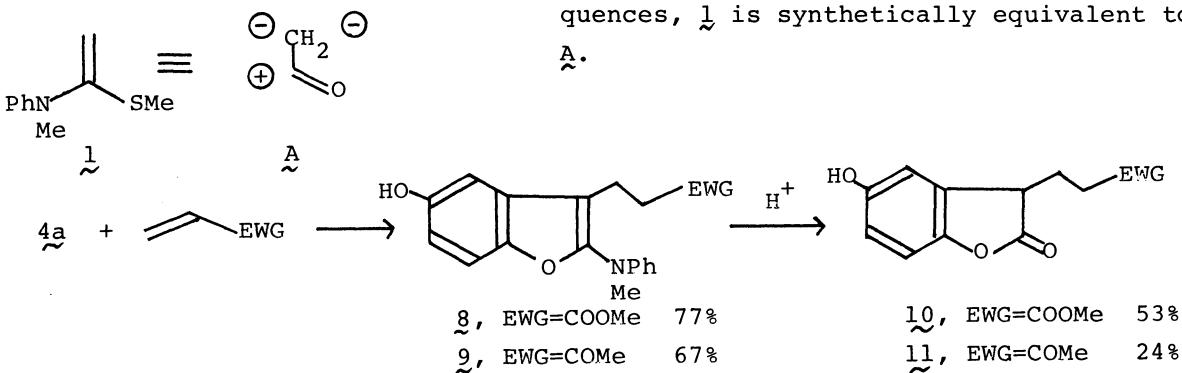

b) The reaction was carried out at room temperature, because the reaction at reflux resulted in decomposition.

Table 2. Synthesis of 6 and 7

Entry	Product ^{a)}	Yield/%	δ /ppm ^{b)}
1	6a	62	6.15
2	6b	42	6.61
3	7a	57	6.47

a) All reaction times were 12 h.

b) The values present the chemical shifts of protons at C-5 as singlets.

References

- 1) H. Takahata, T. Nakajima, and T. Yamazaki, *Synth. Commun.*, 14, 675 (1984).
- 2) H. Takahata, T. Nakajima, and T. Yamazaki, *Chem. Pharm. Bull.*, 32, 1658 (1984).
- 3) H. Takahata, T. Nakajima, K. Matoba, and T. Yamazaki, *Synth. Commun.*, 14, 1257 (1984).
- 4) The compound 1 was prepared as follows. Condensation of N-methylaniline with acetyl chloride in pyridine followed by thiation with P_2S_5 in one flask reaction gave N-methyl-N-phenylthioacetamide, which was converted to methyl iodide salt. The salt was treated with t BuOK to afford 1 as an oil (bp 71-73 °C/0.3 mmHg) in 42% overall yield.
- 5) All new compounds were fully characterized spectroscopically (IR, 1H NMR, MS) and by elemental analyses.
- 6) D. N. Reinhoudt and C. G. Kouwenhoven, *Tetrahedron Lett.*, 1972, 5203.

(Received September 24, 1985)